352 research outputs found

    The School to Family Pipeline: What Do Religious, Private, and Public Schooling Have to Do with Family Formation?

    Get PDF
    Private religious schools are widely seen as value-laden communities that mold the character of their students. Thus, we expect adults who attended religious schools as children to demonstrate more favorable family outcomes related to stable marriages and childbearing. We further expect Protestant schooling to have a more powerful effect on marital outcomes than Catholic schooling, given the heavier focus of Protestantism on marriage. Finally, we expect stronger positive associations between religious schooling and marital outcomes for adults who grew up in difficult circumstances compared to adults who grew up in advantaged circumstances. We test these hypotheses using survey data from the Understanding America Study. Our three outcome variables are ever marrying and never divorcing, ever divorcing, and conceiving a child out-of-wedlock. Most of the results confirm our hypotheses. Protestant schooling is associated with more positive marital outcomes across all three measures. Catholic schooling is significantly correlated with a lower likelihood of having a child outside of marriage. The associations between religious schooling and desirable marriage outcomes are strongest for adults who grew up poor and for those raised in intact families

    Hydrogeomorphic Classification for Great Lakes Coastal Wetlands

    Get PDF
    A hydrogeomorphic classification scheme for Great Lakes coastal wetlands is presented. The classification is hierarchical and first divides the wetlands into three broad hydrogeomorphic systems, lacustrine, riverine, and barrier-protected, each with unique hydrologic flow characteristics and residence time. These systems are further subdivided into finer geomorphic types based on physical features and shoreline processes. Each hydrogeomorphic wetland type has associated plant and animal communities and specific physical attributes related to sediment type, wave energy, water quality, and hydrology

    Self-Supervised Visuo-Tactile Pretraining to Locate and Follow Garment Features

    Full text link
    Humans make extensive use of vision and touch as complementary senses, with vision providing global information about the scene and touch measuring local information during manipulation without suffering from occlusions. While prior work demonstrates the efficacy of tactile sensing for precise manipulation of deformables, they typically rely on supervised, human-labeled datasets. We propose Self-Supervised Visuo-Tactile Pretraining (SSVTP), a framework for learning multi-task visuo-tactile representations in a self-supervised manner through cross-modal supervision. We design a mechanism that enables a robot to autonomously collect precisely spatially-aligned visual and tactile image pairs, then train visual and tactile encoders to embed these pairs into a shared latent space using cross-modal contrastive loss. We apply this latent space to downstream perception and control of deformable garments on flat surfaces, and evaluate the flexibility of the learned representations without fine-tuning on 5 tasks: feature classification, contact localization, anomaly detection, feature search from a visual query (e.g., garment feature localization under occlusion), and edge following along cloth edges. The pretrained representations achieve a 73-100% success rate on these 5 tasks.Comment: RSS 2023, site: https://sites.google.com/berkeley.edu/ssvt

    Standardized Measures of Coastal Wetland Condition: Implementation at a Laurentian Great Lakes Basin-Wide Scale

    Get PDF
    Since European settlement, over 50 % of coastal wetlands have been lost in the Laurentian Great Lakes basin, causing growing concern and increased monitoring by government agencies. For over a decade, monitoring efforts have focused on the development of regional and organism-specific measures. To facilitate collaboration and information sharing between public, private, and government agencies throughout the Great Lakes basin, we developed standardized methods and indicators used for assessing wetland condition. Using an ecosystem approach and a stratified random site selection process, birds, anurans, fish, macroinvertebrates, vegetation, and physico-chemical conditions were sampled in coastal wetlands of all five Great Lakes including sites from the United States and Canada. Our primary objective was to implement a standardized basin-wide coastal wetland monitoring program that would be a powerful tool to inform decision-makers on coastal wetland conservation and restoration priorities throughout the Great Lakes basin

    Standardized Measures of Coastal Wetland Condition: Implementation at a Laurentian Great Lakes Basin-Wide Scale

    Get PDF
    Since European settlement, over 50 % of coastal wetlands have been lost in the Laurentian Great Lakes basin, causing growing concern and increased monitoring by government agencies. For over a decade, monitoring efforts have focused on the development of regional and organism-specific measures. To facilitate collaboration and information sharing between public, private, and government agencies throughout the Great Lakes basin, we developed standardized methods and indicators used for assessing wetland condition. Using an ecosystem approach and a stratified random site selection process, birds, anurans, fish, macroinvertebrates, vegetation, and physico-chemical conditions were sampled in coastal wetlands of all five Great Lakes including sites from the United States and Canada. Our primary objective was to implement a standardized basin-wide coastal wetland monitoring program that would be a powerful tool to inform decision-makers on coastal wetland conservation and restoration priorities throughout the Great Lakes basin

    Measurements of momentum and heat transfer across the air–sea interface

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1054–1072, doi:10.1175/2007JPO3739.1.This study makes direct measurements of turbulent fluxes in the mixed layer in order to close heat and momentum budgets across the air–sea interface and to assess the ability of rigid-boundary turbulence models to predict mean vertical gradients beneath the ocean’s wavy surface. Observations were made at 20 Hz at nominal depths of 2.2 and 1.7 m in 16 m of water. A new method is developed to estimate the fluxes and the length scales of dominant flux-carrying eddies from cospectra at frequencies below the wave band. The results are compared to independent estimates of those quantities, with good agreement between the two sets of estimates. The observed temperature gradients were smaller than predicted by standard rigid-boundary closure models, consistent with the suggestion that wave breaking and Langmuir circulation increase turbulent diffusivity in the upper ocean. Similarly, the Monin–Obukhov stability function ϕh was smaller in the authors’ measurements than the stability functions used in rigid-boundary applications of the Monin–Obukhov similarity theory. The dominant horizontal length scales of flux-carrying turbulent eddies were found to be consistent with observations in the bottom boundary layer of the atmosphere and from laboratory experiments in three ways: 1) in statically unstable conditions, the eddy sizes scaled linearly with distance to the boundary; 2) in statically stable conditions, length scales decreased with increasing downward buoyancy flux; and 3) downwind length scales were larger than crosswind length scales.We are grateful to the Office of Naval Research for funding this work as a part of CBLAST-Low

    Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management

    Get PDF
    Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide
    • …
    corecore